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1  INTRODUCTION

1.1 Overview

This document is the final technical report for the SiC MEMS for Harsh Environments in-house
research program jointly coordinated between AFRL/MNMF and AFRL/MLPS.

This document addresses the benefits of silicon carbide (SiC) as a material of choice for harsh
environment applications, specifically at the scale of microelectromechanical systems (MEMS).
Although all of the objectives of this research were not fully met, due to fabrication issues
associated with this relatively new technology, the main objective of establishing the benefit of
SiC for harsh environment applications was a successful accomplishment of this program.

1.2 Objective

The objective of this 6.1 effort was to investigate the survivability limits of SiC MEMS and
electronics for harsh environments, in order to gain a fundamental understanding of the failure
modes and temperature limits for SiC structural and electronic components.  Devices were to be
fabricated and evaluated under high g loads to determine failure mechanisms and operation
limits.

1.3 Accomplishments

Due to unforeseeable fabrication issues associated with the SiC MEMS foundry, the desired
devices were not fabricated.  Consequently, high g shock loading of the SiC MEMS devices was
not accomplished.  However, high temperature material characterization was accomplished on
two distinct polytypes of SiC (3C poly-SiC and 6H), and this was compared to similar
characterization of polysilicon.  The results of this characterization, as presented in this
document, give clear evidence of the benefit of SiC for high temperature environments.  A
subsequent program has allowed for high g shock loading of a functioning SiC MEMS
accelerometer, with published results [1].
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2 HIGH TEMPERATURE TESTING OF SiC

Measuring Young’s modulus of various SiC polymorphs over a wide temperature range (100 to
600 °C) has been accomplished using a Bohlin rheometer in the torsion mode.  With Young’s
modulus as a function of temperature, and using software such as MemCad, by Coventor, Inc.,
one can simulate the resonance frequencies of a given MEMS microaccelerometer design.  These
frequencies are related to natural vibrations of the system and vary when a constant or sinusoidal
force is applied to the system.  Correlations of predicted resonances with experimental data from
high impact are presented.

2.1 Introduction

In many industrial and military applications there is a need to have MEMS sensors that can
withstand high shock, 80,000g’s and temperatures close to 1000 °C.  A material of choice is
silicon carbide (SiC).  As technology pushes toward space and harsh environment applications,
the need for high power, high temperature, radiation resistant, and high mechanical performance
materials has become a motivation in materials research for electronic and mechanical
performance of nano/microelectromechanical systems.  High thermal conductivity and excellent
durability makes silicon carbide an excellent choice for these applications.  Since SiC has a
bandgap that is dependant upon its polytype, it is considered a versatile and competitive material
[2-8] for applications where other conventional semiconductors fail.  Its high electron mobility
allows for increase current within the semiconductor and high energy pulsed applications [9].
Polytypes range from purely wurtzite (cubic) to hexagonal with over 200 variations [10].  The
bandgap ranges from 2.3 to 3.3 eV depending on the polytype with the most common types
being 3C-SiC (2.3 eV) and 6H-SiC (2.9 eV).  SiC has a melting temperature of approximately
2800 °C, thus capable of being operated in the temperature range of 600-1000 °C [4,5].

The need for the mechanical properties (modulus) of these SiC polytypes at a series of
temperatures (room temperature to 600 °C) led us to consider the torsion solid fixturing device
found in rheometers such as a Bohlin Rheometer.  Equipped with a high temperature oven, and
operating at either a fixed frequency, this instrument yielded to he shear modulus, G', which for
elastic materials and small rectangular cross-sections G'  = 3E, where E is the elastic modulus, or
Young’s modulus.  For low modulus materials such as rubber, the problem of twisting of a bar of
rectangular cross section is complicated due to the warping of the cross section during twisting
[11].  When there is longitudinal tension and the material is soft, there is still another correction
needed [12].  However, for very rigid materials such as silicon or silicon carbide, these
conditions do not cause significant deviations from the true modulus.

Once the modulus versus temperature for various SiC polytypes, silicon, and polysilicon were
obtained, single values of modulus and the corresponding temperatures were used as input to
Coventor, Inc.’s software for MEMS simulation, MemCad version 4.0.  This software was used
to simulate the performance of a capacitive microaccelerometer design fabricated from poly (3C-
SiC) by Case-Western Reserve University [13] (see Fig. 1).  The modulus and temperature were
stored in the MemCad material property data files.  Simulations to obtain natural frequencies,
resonance frequencies while impinging a 1 MPa load on the upper parallel plate applying a 10V
potential across the plates were then performed [14].
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Once these resonance frequency results were obtained for silicon, polysilicon, 6H-SiC and poly
(3C-SiC) at various temperatures and under different external forces, they were compared with
our experimental impact test resulted in an effort to better understand the performance of
microaccelerometers under real life applications.

2.2 Measurements and Computations

The Bohlin VOR-MELT rheometers used for mechanical modulus measurements had a solids
fixture, which held both ends of a vertically oriented rectangular cross section bar
(5.23x0.58x8.6 cm).  The 8.6 cm was the length of the specimen between the top and bottom
clamps.  The torque element was 51 g-cm, temperature ranged from 30 to 350 °C, at a 0.5 °C per
minute heating rate, measurement interval was 60 sec, sensitivity was 1x, and the amplitude of
oscillation was 10%.  The measurements were made in the oscillation test mode. Typical results
are shown in Fig. 2.  The modulus, E, was determined by using the equation G' = 3E.

The software used in these simulations was MemCad v 4.0, by Microcosm Inc., now Coventor,
Inc.  A *.cif file of the CWRU capacitive microaccelerometer shown in Figure 1 was designed
with L-Edit software by Tanner Associates.  This was used as input to the MemCad process
modeler or KIC layout editor.  The results were transferred to the IDEAS solid modeler package
in MemCad.  This provided the solid model on which finite element modeling could be
performed.  Modal and harmonic analyses were performed on the unperturbed model and when a
1 MPa load or a 10 V potential were independently applied to the system.  For a steady state
linear dynamic analysis, the equation of motion for the αth mode is:

tief
m

xxcx Ω=++ α
α

ααα ω
12&&&

where, αx is the amplitude of the mode α, αc is the damping coefficient associated with this

mode, αω is the undamped frequency of this mode, αm is the generalized mass associated with
the mode, αf  is the amplitude of forcing associated with the mode, and Ω  is a forcing
frequency.  Steady state response is given as a frequency sweep through a user-specified range of
frequencies.

2.3 Results of Computation

The natural frequency modes of polysilicon at room temperature (30 °C) and 200 °C are about
the same (see Table 1).  This is because the modulus of polysilicon at these two temperatures is
nearly equal.  However, poly (3C-SiC) has a much higher modulus than polysilicon and as a
result, even at 300 °C, the resonance frequencies are higher than those of polysilicon.

During real life usage, there will be external forces on the device, so we imposed a 1 MPa force
on the top plate to see what effect this would have on the resonance frequencies.  As can be seen
in Table 2, applying a 1 MPa force to the top plate reduces the resonance frequencies by a factor
of 107.  This was true in spite of the increased modulus of the poly (3C-SiC).  As a rough



4

estimate, since force equals the product of mass and acceleration (g = 9.8 m/sec2), a 1 MPa force
corresponds to about 100,000g’s.  High speed impact testing has resulted decelerations of up to
80,000g’s.

Finally, in Table 3 we show the reaction forces at the ends of the tethers, where the upper plate is
fastened to the device frame (see Fig. 3).  In all cases, the application of a 10 V potential across
the parallel plate capacitor and the application of 1 MPa to the upper plate resulted in roughly the
same in-plane forces (∼0.4 µN) and a vertical force of 301 µN.

Table 1. Natural resonance frequencies for the capacitive microaccelerometer.
Semiconductor Temperature Frequency (Hz)

(C) 1 2 3 4 5
Poly silicon 30 5,310 9.590 9,670 29,300 42,400

200 5,300 9,560 9,640 29,300 42,300

Poly(3C-SiC) 300 10,100 18,300 18,500 57,400 79,100

Table 2. Resonance frequencies for capacitive microaccelerometer with 1 MPa applied
to the top plate.

Semiconductor Temperature Frequency (Hz)
(C) 1 2 3 4 5

Poly(3C-SiC) 500 0.00024 0.00037 0.00039 0.00053 0.00053
1000 0.00017 0.00030 0.00030 0.00092 0.00133

Table 3. Reaction forces at end of tether when external forces are applied.
Semiconductor Temperature External Forces (µN)

(C) Force Fx Fy Fz

Poly silicon 30 10 Volt 0.427 -0.493 301.41

Poly(3C-SiC) 500 1 MPa 0.349 -3.46 301.80
1000 1 MPa 0.352 -3.45 301.79
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Figure 1.  Capacitive microaccelerometer used for this study.  Four tethers exist, one on each side of
the floating plate.
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Figure 2.  Typical data obtained with the Bohlin Rheometer.  These results are for poly(3C-SiC).  The
heavy solid curve is the least squares fit to the experimental data.



7

Figure 3.  Solid model of device used in the simulations.  The top plate thickness has been increased
to show the attachment tethers.  The reaction forces are at the attachments as indicated.
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3 METALLIZATION OF SiC

Quantum mechanical CASTEP software calculations were performed using nickel and rhenium
atom deposition onto cleaved surfaces (active, hydrogenated, and oxygenated).  These
calculations were performed without metal atoms and with metal atoms at selected positions
(origin, a-axis, b-axis) in the unit cell.  Binding energies for each of the metal atoms (nickel and
rhenium) were calculated.  Additionally, calculated energy bands with associated density-of-
states and partial density-of-states were examined regarding the population of s, p, and d bonding
characteristics.  Nickel atom deposition onto silicon rich surfaces tended to bond to the silicon
atoms as well as the underlying carbon atoms.  However, rhenium atom deposition showed
bonding only to the silicon atoms.  This was observed experimentally and is reported herein.
Experimentally, the rhenium deposition surface is extremely smooth and has only ohmic
characteristics with near zero resistance.

3.1 Introduction

Many strides are being made in the areas of growth, doping and contamination reduction of SiC
[15].  With advances in these fields, the major limiting factor in SiC device technology is
reproducible metallization.  Resistivities as low as 1 x 10-6 O/cm2 have been achieved, however
several problems remain unsolved [16].  Particularly at elevated temperatures, metal atom inter-
diffusion, formation of silicates and carbides, degradation of the interface due to lattice mismatch
and surface reconstruction are a few areas of research requiring more study.  The most notable
problem in formation of stable ohmic contacts is Schottky barrier control.  Understanding what
affects barrier height, how to manipulate it, and finding an appropriate metal that minimizes the
barrier height while remaining harsh environment resistant will provide invaluable information
for advancement in SiC device technology [17].

The encouraging experimental findings as described in the dissertation by G. Y. McDaniel [18]
led us to perform the present computation.  His results showed that rhenium is an excellent metal
for electrical contacts to SiC.  Initially he did an extensive study of the influence of thin layers of
Ni on SiC to gain an understanding of contact formation.  Variables affecting the work function
of the SiC surface were varied and the results tabulated.  Calibration during this phase of his
research was unable to verify a reproducible procedure for application to the Ni/SiC contact.
The Re/6H-SiC contact was demonstrated on three surfaces. Each was characterized with Dektak
stylus profilometry, XRD, AES and I-V electrical measurements in the as-deposited condition.
They were then exposed to a 120 minute anneal at 1000 °C in vacuum at less than 1 x 10-6 Torr
total pressure.  Each sample was again characterized and the results compared to the pre-anneal
condition.

The first surface was stoichiometric clean SiC.  Contacts on this surface proved to be wide
ranging in resistivity depending on whether or not the contact was annealed.  The pre-annealed
average resistance was 3700 ohms and the average post-annealed resistance was 50 ohms.  It is
important to note that one sample included in this average had contact regions that were annealed
at roughly 200 °C lower than other samples due to poor mounting.  Removing this sample
reduces the post-anneal average from 50 to only 6 ohms.  The contacts were rectifying prior to
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annealing.  After annealing, most were still slightly rectifying, however their I-V curves
indicated they were transitioning to Ohmic character.  There was no detectable reaction in either
XRD or AES data, however, the film was shown to relax into the (103) crystallographic plane for
Re with heat treatment.

The second surface was graphitized SiC.  Contacts on this surface were successful, however,
their properties were undesirable for this study.  In all cases, the depositions resulted in dull gray
or flaky contacts and the Re did not wet with the SiC.  The resistivity was less wide ranging than
the stoichiometric condition.  The pre-annealed average was 72 ohms and the post-annealed
average was 21 ohms.  All contacts were rectifying prior to annealing.  After annealing again, a
few contacts were near ohmic, but most still exhibited some rectifying character.  There was no
detectable reaction from XRD data, however, the film was shown to relax into the (002)
crystallographic plane for Re with heat treatment.  The AES data indicated an unusual
phenomenon with this surface chemistry.  While reaction was not evident, the ordering of the Re
into the (002) crystallization incorporated a “self-cleaning” of the film.  Films that were
unintentionally contaminated with carbon throughout showed strong signs of graphite clumping
and being forced to the surface of the contact with heat treatment.

The third surface was a silicon layer deposited on a stoichiometric SiC surface.  This contact was
the most promising of all conditions.  Films were highly ordered in both the as deposited and the
post-annealed conditions.  XRD confirmed preferential crystallization along the Re (101) plane.
AES confirmed migration of Re into the interface and possible reaction with the Si film at
elevated temperatures.  I-V curves prior to annealing were mostly rectifying.  While annealing
every contact was found to be 100% ohmic with R-squared values of 0.99 to 1.00 when
subjected to a linear regression fit.  The pre-anneal average resistance was 212 ohms while the
post-anneal average was 3 ohms.  This rhenium study was not optimized for low resistivity.
Rather, it focused on material aspects; for example, the substrates used in the experimental effort
did not have a heavily doped contact region.

It is this third surface condition that we chose to simulate using CASTEP software by Accelrys
Inc.  The modeling procedure and results of this computation follow.

3.2 Details of the Calculation

The theoretical basis of CASTEP is the density functional theory (DFT) in the local density
approximation (LDA) or gradient-corrected LDA version as developed by Perdew and Wang
[19] (CGA).  The default setting in CASTEP is CGA.  The electron-ion interaction is described
using a pseudopotential concept.  Potentials have been generated using the optimization scheme
of Lin [20], et. al.  Pseudopotentials may be either local or nonlocal, the latter in a separable
Kleinman-Bylander [21] form.  The action of a nonlocal potential on a wave function can be
calculated in either reciprocal or real space, the real space implementation offering better
scalability with size.  CASTEP is based on a supercell method, whereby all studies must be
performed on a specific periodic system, even when the periodicity is superficial.  For example, a
crystal surface must be represented by a finite-length slab.  Study of molecules is also possible
by assuming a molecule is put in a box and treated as a periodic system. There is no limitation on
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the shape of the supercell.  If the crystal possesses high point-group symmetry, this can be used
to speed the calculations.

Electronic relaxation is achieved by minimization of the total energy.  The electronic
wavefunctions are expanded using a plane-wave basis set, and the expansion coefficients are
varied so as to minimize the total energy.  This minimization is implemented within CSTEP by a
modern all-bands method that allows simultaneous update of all wavelengths [22].  CASTEP
uses special k-points sampling for integration over the Brillouin zone, fast Fourier transforms
(FFT) to evaluate matrix elements, and wavelength symmetrization for crystals with point –
group symmetry higher that P1.  For metallic systems CASTEP intrudes partial occupancies for
levels close to the Fermi energy [23].

The procedure used was to create a 6H-SiC single crystal, minimize the structure, and cleave the
crystal along a desired crystallographic plane.  The distance between the cleaved surface and the
bottom of the upper crystal unit cell which is in the adjacent cell, is separated to a distance
sufficiently large so the surface atoms feel no interaction with the upper cell atoms, typically
50Å.  Once the separation is performed, the system is again geometrically minimized.  The
cleave plane can be moved so as to pass through silicon atoms resulting in a silicon rich surface.
This system can then be hydrogenated, oxygenated, or left stoichiometric and then again
minimized.  Once this minimized cleaved surface structure is achieved, all atom positions below
the top layer were fixed.  Any minimizations hereafter will only move the surface and deposited
atoms.

The standard pseudopotentials used were in Kleinman-Bylander [21] separable form and are
norm conserving.  This guarantees the transferability of the pseudopotential.  That is, the same
potential correctly reproduces the valence electron scattering by the ionic core in different
chemical environments.  Potential for the first-row elements (C, O, N, etc.) and for transition
metals are optimized to achieve the best possible convergence with respect to the number of
plane waves in the basis set.  For rhenium we used the CASTEP in pseudopotential,
cst_Re_00.usp.  We used the GGS-RPBE pseudopotentials as provided in CASTEP.  This is the
spin-polarized version of the Generalized Gradient approximation using the revised Perdew-
Burke-Ernzerhof potentials [24-27].

The k-point selection in CASTEP uses the Monkhorst-Pack scheme [28], which produces a
uniform mesh in reciprocal space.  For all calculations, we specified the energy convergence
criterion to be 0.1 eV/atom.

Once the unit cell atom configuration was minimized, a rhenium atom was added at selected
positions (typically at the origin, the end of the a-axis and the end of the b-axis). It was placed at
roughly 2.0Å above the surface of the silicon atoms.  A single-point energy minimization was
performed.  The global energy minimum was chosen as the best attachment position.  Using the
Cerius2 software, bonds to the neighboring atoms were formed.  Then a 2 x 2 superlattice was
formed by combining four basic unit cells and a single rhenium atom was added at specific
locations and the system minimized.  After this a 3 x 3 superlattice was formed using nine unit
cells and at selected points on the surface a rhenium atom was inserted for minimization.  This
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procedure allows the investigator to extrapolate the binding energy of rhenium to that of an
infinite silicon rich surface.

3.3 Computational Results

As mentioned above, the metallization of a silicon rich 6H-SiC surface with nickel led to a
surface with poor current carrying characteristics and which clustered when annealed at elevated
temperatures, about 1000 °C.  Computationally, nickel atoms deposited onto a silicon rich
cleaved (001) 6H-SiC surface bonded to the silicon atoms and to the underlying layer of carbon
atoms, Figure 4.  The partial density-of-states is shown in Figure 5.  In this plot the Fermi level is
located at zero eV.  One can see that nickel deposited onto silicon acts as a semiconductor.  The
top of the valence band is dominated by d-type wave functions.  There is some p-type character.
The bottom of the conduction band is dominated by d-type bonding but also has an almost
equally strong p-type and s-type bonding character.  For nickel with three bonds to silicon and
one to carbon, the average bond energy is 427 kJ/mole (102 kcal/mole).  The binding energy of
nickel to the cleaved silicon rich surface is 1,868 kJ/mole (446.26 kcal/mole).

Experimentally, rhenium atoms deposited onto a silicon rich 6H-SiC surface and annealed for
120 minutes at 1000 °C yielded a smooth, very low resistance, purely ohmic electrical contact.
As above for nickel atoms, rhenium was placed over selected positions in the unit cell, e.g., over
the origin (O), at the end of the b-axis (B), and at the end of the a-axis (A), see Figure 6.  Here
we report the results of placing the atom over the origin.  The total energy of the system varied
only by about one percent between using an active surface, a silicon rich, or a hydrogenated
silicon surface.  Since the experiments dealt with silicon rich surfaces and small variations
existed between various surface conditions, we will report only on silicon rich surface
conditions. Rhenium bonded only to the silicon atoms.  Even when we created a carbon rich
surface, the rhenium atoms bonded to the underlying silicon atoms.  For the silicon rich surface,
the average bond energy was 846 kJ/mole (202 kcal/mole). The binding energy of rhenium to the
silicon rich surface was 991 KJ/mole (236.6 kcal/mole).  The width of the unit cell surface was
increased from a 1 x 1 cell to a 2 x 2 to a 3 x 3 cell size.  The average bond energy remained
about the same.  The partial density-of-states for rhenium atoms deposited onto a silicon rich 6H-
SiC surface is presented in Figure 7.  Here the Fermi energy is located at 0 eV.  The s-type wave
function extends above the Fermi level.  There appears to be no d-type bonding.  When we
deposited a second layer of rhenium atoms onto the first layer, Figure 8, we now observed a total
metal material (Figure 9).  The s-, p-, and d-type wave functions all extend through the Fermi
level into the conduction band.  There is no bandgap; the material is a metal.

3.4 Conclusions

Calculations show that the bond energy of rhenium to a silicon rich surface is about twice that of
nickel to the same surface.  This helps explain the better stability of rhenium over nickel on a
silicon rich surface of 6H-SiC after annealing at 1000 °C for 120 minutes.  This selected bonding
of rhenium atoms to only silicon atoms was independently determined computationally.  It was
only after we presented the computational results that we heard about the experimental findings.
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Figure 4.  Single cell showing first layer deposition nickel atoms bonding to silicon and underlying
carbon atoms.
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Figure 6.  Single cell showing first layer deposition rhenium atoms bonding only to silicon atoms.
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Figure 7.  Partial density-of-states of first layer bonding of rhenium to silicon atoms. Curves are
designated, A, total s-type bonding; B, total p-type bonding, and D, total sum bonding.
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Figure 8.  Single cell showing second layer deposition rhenium atoms onto the first layer of rhenium
atoms, which bonded only to silicon atoms.   The second layer bonds only to the existing
layer of rhenium atoms.
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Figure 9.  Partial density-of-states of second layer bonding of rhenium on rhenium, which is on a
silicon rich surface. Curves are designated, A, total s-type bonding; B, total p-type bonding,
C, d-type bonding and D, total sum bonding.
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4 CONCLUSIONS

The results from this program provide clear evidence of the benefit of SiC as a harsh
environment (specifically high temperature) material for both structural and electronic devices.
Although shock testing of SiC MEMS devices under this program was not accomplished,
subsequent work allowed for this testing to occur, with positive results.  Furthermore, one of the
key concerns with respect to SiC electronics was the need for good contact metallization for
ohmic contacts.  Rhenium was found to be an excellent material for providing ohmic contact
metallization on SiC.  These results provide a good foundation for the benefits of SiC for harsh
environment (high temperature and high shock) applications.



19

5 REFERENCES

1. Atwell, Andrew R., Okojie, Robert S., Kornegay, Kevin T., Roberson, Scott L., and Beliveau,
Alain, “Simulation, fabrication and testing of bulk micromachined 6H-SiC high-g piezoresistive
accelerometers,” Sensors and Actuators A, 104, 11-18 (2003).

2. S. Morkoc, S. Strite, G. B. Gao, M.E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys., 76, 1363-
1371 (1994).

3. Robert A. Metzger, Compound Semiconductors, 1, 26-28 (1995).
4. Thadeus B. Massalski, Binary Alloy Phase Diagrams, 590 (1986).
5. Papanicolaou, A. Hristou, and M. L. Gipe, J. Appl. Phys., 65, 3526-3530 (1989).
6. Moki, A. P. Shenoy, D. Alok, and B. J. Baliga, J. Elect. Mat., 24, 315-317 (1995).
7. J. B. Hudson, Surface Science, An Introduction, Butterworth-Heinemann, Boston, 236-244 (1992).
8. Rolf E. Hummel, Electronic Properties of Materials, Springer-Verlag, Berlin, 98-119 (1993).
9. G. L. Katulka, J. Kolodzey, and J. Olowolafe, IEEE Trans. Mag., 35, 356-360 (1999).
10. M. Manudurand and Sijiro Furukawa, IEEE J. Circ. & Dev., 8, 22-26 (1992).
11. S. P. Timenshenko and J. N. Goodier, Theory of Elasticity, 3rd Ed., McGraw-Hill, 309-313

(1970).
12. S. P. Timenshenko, Strength of Materials Part II, 3rd Ed., Van Nostrand, 286-291 (1956).
13. M. Mehregany, CWRU, SiC MUSiC Process
14. M. Paz, Structural Dynamics Theory and Computations, Van Nostrand Reinhold (1991).
15. Photoemission work currently being studied at Wright-Patterson AFB, Ohio.
16. Tsutomu Uemoto, Jap. J. Appl. Phys., 34, L7-L9 (1995).
17. M. J. Bozack, Phy. Stat. Sol. (b) , 202, 549-580 (1997).
18. G. Y. McDaniel, PhD Dissertation, Dept. Physics, University of Florida (2001).
19. J. P. Perdew, Electronic Structure of Solids, ed; P. Ziesche and H. Eschrig, Berlin Akademie,

(1991).
20. Z. Lin and J. Harris, J. Phys. Condens. Matter, 5, 1055 (1992).
21. L. Kleinman and D. M. Bylander, Phys. Rev. Lett., 44, 1425 (1982).
22. J. Gillan, J. Phys. Cond. Matt., 1, 689 (1989).
23. A. de Vita, Ph. D. Thesis, Keele Univ., UK (1992).
24. J.P. Perdew and Y. Wang, Phys. Rev., B46, 6671 (1992).
25. J.A. White and D.M. Bird, Phys. Rev., B50, 4954 (1994).
26. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).
27. B. Hammer, L.B. Hansen, and J.K. Norskov, Phys. Rev ., B59, 7413 (1999).
28. H. J. Monkhorst and J. D. Pack, Phys. Rev., B13, 5188 (1976).



20

DISTRIBUTION LIST
AFRL-MN-EG-TR-2004-7025

 
 
Defense Technical Info. Center           1
8725 John J. Kingman Rd Ste 0944
Fort Belvoir VA 22060-6218

                                               

 
 
Eglin AFB offices:
 
AFRL/MNOC-1 (STINFO Office)    1       
AFRL/CA-N                                     1
AFRL/MNME             1
AFRL/MNMF             1
AFRL/MNMW             1
AFRL/MNMI             1
AFRL/MN             1
 


